Mamoru Miyazawa, ${ }^{\text {a }}$ Takashi Tokuhashi, ${ }^{\text {a }}$ Akiyoshi Horibata, ${ }^{\text {a }}$ Takatoshi Nakamura, ${ }^{\text {a }}$ Yu Onozaki, ${ }^{\text {a }}$ Nobuhito Kurono, ${ }^{\text {b }}$ Hisanori Senboku, ${ }^{\text {c }}$ Masao Tokuda, ${ }^{\text {a }}$ Takeshi Ohkuma, ${ }^{\text {b }}$ and Kazuhiko Orito ${ }^{\text {a* }}$
${ }^{\text {a }}$ Laboratory of Organic Synthesis, Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
${ }^{\mathrm{b}}$ Laboratory of Organic Synthesis, Division of Chemical Process Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
${ }^{\text {c }}$ Laboratory of Organic Reaction, Division of Chemical Process Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
*E-mail: orito@eng.hokudai.ac.jp
Received March 30, 2011
DOI 10.1002/jhet. 1044

Published online 2 April 2013 in Wiley Online Library (wileyonlinelibrary.com).

A variety of alkoxy-substituted benzolactams with a berbine or yohimbane skeleton were prepared from 1 -benzyl-1,2,3,4-tetrahydroisoquinolines or 1 -benzyl-1,2,3,4-tetrahydro- β-carbolines by a phosphine-free $\mathrm{Pd}(\mathrm{II})$-catalyzed direct aromatic carbonylation in a $\mathrm{Pd}(\mathrm{OAc})_{2}-\mathrm{Cu}(\mathrm{OAc})_{2}$ catalytic system. The site selectivity was compared with that of the carbonylation with $\operatorname{Pd}(\mathrm{OAc})_{2}$ or $\mathrm{Pd}(\mathrm{OAc})$ ${ }_{2} \cdot 2 \mathrm{PPh}_{3}$, respectively.
J. Heterocyclic Chem., 50, E48 (2013).

INTRODUCTION

We recently reported $\mathrm{Pd}(\mathrm{OAc})_{2}$-catalyzed carbonylation of amines using a $\mathrm{Pd}(\mathrm{OAc})_{2}-\mathrm{Cu}(\mathrm{OAc})_{2}$ catalytic system [1]. The method provides N, N^{\prime}-dialkylureas from primary amines, oxazolidinones from 2-amino-1-alkanoles, and isoindolin-1-ones or tetrahydroisoquinolin-1-ones from secondary amines such as N-alkylbenzylamines or N-alkylphenethylamines. In the benzolactam formation, the chelation of a palladium species especially with a $3^{\prime}, 4^{\prime}$ methylenedioxy group generates ortho-palladation at the C-2' position to conduct a CO group to the $\mathrm{C}-2^{\prime}(\mathbf{i})$, and in contrast, steric repulsion caused by a $3^{\prime}, 4^{\prime}$-dimethoxy group prefers the insertion of CO to the $\mathrm{C}-6^{\prime}$ (ii), as shown in Figure 1. Such effects are reflected in the products ratios. In this article, we describe a method for direct preparation of 8 -oxoberbines and related benzolactams by $\mathrm{Pd}(\mathrm{OAc})_{2}$-catalyzed direct aromatic carbonylation of 1-benzyl-1,2,3,4-tetrahydroisoquinolines and 1-benzyl-$1,2,3,4$-tetrahydro- β-carbolines in a $\mathrm{Pd}(\mathrm{OAc})_{2}-\mathrm{Cu}(\mathrm{OAc})_{2}$ catalytic system, which requires no phosphine ligands. Site selectivity of the carbonylation was compared with those of carbonylations using other palladium reagents such as $\mathrm{Pd}(\mathrm{OAc})_{2}$ or $\mathrm{Pd}(\mathrm{OAc})_{2} \cdot 2 \mathrm{PPh}_{3}$ [2]. Some of the benzolactams obtained have been converted to protoberberine alkaloids [3, 4], which have been known to have a variety of biological activities [5a] including antileukemic and antitumor activities [5b].

RESULTS AND DISCUSSION

Substrates, 1-benzyltetrahydroisoquinolines 1, were prepared in a conventional reaction sequence starting with the corresponding phenethylamines [6], and their carbonylation to the 8 -oxoberbines was carried out by using the aforementioned phosphine-free $\mathrm{Pd}(\mathrm{II})$-catalyst, $\mathrm{Pd}(\mathrm{OAc})_{2}$ $(5 \mathrm{~mol} \%)-\mathrm{Cu}(\mathrm{OAc})_{2}(50 \mathrm{~mol} \%)$ under carbon monoxide gas containing oxygen (Method A). Carbonylation with a stoichiometric amount of $\mathrm{Pd}(\mathrm{II})$-reagent, $\mathrm{Pd}(\mathrm{OAc})_{2}$ (Method B) or $\mathrm{Pd}(\mathrm{OAc})_{2} \cdot 2 \mathrm{PPh}_{3}$ (Method C) [2], was also examined for comparison. As shown in Scheme 1, carbonylation of 1a-d with $\mathrm{Pd}(\mathrm{OAc})_{2}(\mathrm{~B})$ appeared to proceed via the most bulky cyclopalladation product which is probably in a dimeric form [7], and gave a mixture of benzolactams $\mathbf{2}$ and $\mathbf{3}$ in selectivities of $4: 3$ for a $3^{\prime}, 4^{\prime}$-methylenedioxy group (b and d) and exclusively $\mathbf{3}$ for a $3^{\prime}, 4^{\prime}$-dimethoxy group (a and \mathbf{c}) (Table 1). The remarkable site selectivity of the latter may be accounted for by a steric repulsion so-called buttressing effect of the dimethoxy group [8]. Carbonylation with another $\mathrm{Pd}(\mathrm{II})$-reagent, $\mathrm{Pd}(\mathrm{OAc})_{2} \cdot 2$ $\mathrm{PPh}_{3}(\mathrm{C})$ gave a $3: 1$ ratio of $\mathbf{2}$ and $\mathbf{3}$ for the dimethoxy, probably due to the more reduced steric hindrance compared with the dimeric cyclopalladation product in the use of $\mathrm{Pd}(\mathrm{OAc})_{2}$ [7] (B), and only 2 for the methylenedioxy due to the more efficient chelation between $\mathrm{Pd}(\mathrm{II})$ and an oxygen atom of the neighboring alkoxy group [9]. Method A shows site selectivity between Methods B and

Figure 1. $\mathrm{Pd}(\mathrm{OAc})_{2}$-catalyzed carbonylation.

Scheme 1

$\mathrm{CO}(1$ atm $)$
A, B or C
toluene, reflux
a, $R^{1}=R^{2}=R^{3}=R^{4}=\mathrm{OMe}$
b, $R^{1}=R^{2}=\mathrm{OMe}, \mathrm{R}^{3}+\mathrm{R}^{4}=\mathrm{OCH}_{2}$
c, $R^{1}+R^{2}=O C H_{2} \mathrm{O}, R^{3}=R^{4}=\mathrm{OM}$
d, $R^{1}+R^{2}=R^{3}+R^{4}=\mathrm{OCH}_{2} \mathrm{O}$
e, $R^{1}=R^{2}=R^{3}=\mathrm{OMe}, R^{4}=\mathrm{H}$

and / or

Table 1
Carbonylation of 1-benzyl-1,2,3,4-tetrahydroisoquinolines $\mathbf{1}$.

Method	NMR ratios of 2 and $\mathbf{3}^{\text {a,b }}$			Isolated yields of $\mathbf{2}$ or $\mathbf{3}$ (Method)	
	A$2: 3$	B 2:3	$\frac{C}{2: 3}$		
1a, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{OMe}$	3:7	0:10	3:1	2a: 14\% (A)	3a: 47\% (A), 66\% (B)
1b, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{OMe}, \mathrm{R}^{3}+\mathrm{R}^{4}=\mathrm{OCH}_{2} \mathrm{O}$	10:0	4:3	10:0	2b: 71% (A)	3b: 13% (B)
1c, $\mathrm{R}^{1}+\mathrm{R}^{2}=\mathrm{OCH}_{2} \mathrm{O}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{OMe}$	3:7	0:10	4:1	2c: 12% (A)	3c: 45% (A), 74% (B)
1d, $\mathrm{R}^{1}+\mathrm{R}^{2}=\mathrm{R}^{3}+\mathrm{R}^{4}=\mathrm{OCH}_{2} \mathrm{O}$	10:0	4:3	10:0	2d: 72% (A)	3d: 11% (B)
1e, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{OMe}, \mathrm{R}^{4}=\mathrm{H}$	1:1	0:10	2:1	2e: 32% (A)	3e: 36% (A), 62% (B)

${ }^{\text {a }}$ Isomer ratios in the crude reaction mixtures were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis.
"The ratio " $0: 10$ " or "10:0" shows that one of the two isomers was not detected.

C in Table 1. In other words, the $\mathrm{Pd}(\mathrm{OAc})_{2}-\mathrm{Cu}(\mathrm{OAc})_{2}$ system has both abilities of chelation and steric hindrance, proving that $\mathrm{Cu}(\mathrm{OAc})_{2}$ works as not only an oxidant but
also a ligand to $\mathrm{Pd}(\mathrm{II})$. Carbonylation of $\mathbf{1 e}$ revealed that chelation ability of a 3^{\prime}-monomethoxy group was lower than that of a $3^{\prime}, 4^{\prime}$-methylenedioxy group, and its steric
hindrance was smaller than that of a $3^{\prime} 4^{\prime}$-dimethoxy group, as expected. Consequently, it was found that methylenedioxybenzolactams 2b and 2d were selectively obtained in 71 and 72% isolated yields, and methoxybenzolactams $\mathbf{3 a}, \mathbf{3 c}$ and $\mathbf{3 e}$ were obtained in $36 \sim 47 \%$ yield, respectively, by the Method A carbonylation. In contrast, Method B carbonylation afforded methoxybenzolactams, 3a (66%), $\mathbf{3 c}(74 \%)$, and $\mathbf{3 e}(62 \%)$, respectively.

The catalytic carbonylation of other substrates, 4^{\prime} methoxy, $2^{\prime}, 3^{\prime}$-dimethoxy and $3^{\prime}, 4^{\prime}, 5^{\prime}$-trimethoxybenzyl derivatives, $\mathbf{4 g}, \mathbf{4 h}$, and $\mathbf{4 i}$, gave the corresponding 8 -oxoberbines $\mathbf{5 g}(67 \%), \mathbf{5 h}(71 \%)$ and $\mathbf{5 i}(61 \%)$, respectively (Scheme 2). Nonalkoxy-substituted benzolactam $\mathbf{5 f}$ was obtained in 57% yield. Thus, the method should be useful for preparation of berbines and protoberberine alkaloids, as it was already reported that lithium aluminum hydride reduction of 8 -oxobervines provided such alkaloids and related cyclic amines in good yields [4].

A similar site selectivity was reproduced in carbonylation of 1-benzyl-1,2,3,4-tetrahydro- β-carbolines 6 (Scheme 3, Table 2). Methylenedioxybenzolactam 8a and methoxybenzolactam 7b, which have a structural feature of yohimbine alkaloids [10], were isolated in 49 and 68% yields, respectively, by this $\operatorname{Pd}(\mathrm{II})$-catalyzed carbonylation. Method B afforded $\mathbf{8 a}$ in 67% yield.

The direct aromatic carbonylation is able to be conducted using substrates carrying a halogen atom. As shown in Scheme 4, bromides 9a and 9b were converted to 12-bromoberbines 10a (76%) and 10b (78%), respectively, together with a trace of $\mathbf{2 a}$ or $\mathbf{3 b}(<3 \%)$, which has been obtained by a $\operatorname{Pd}(0)$-catalyzed carbonylation based on a halogen-metal exchange of the same bromides [4c].

Thus, by $\mathrm{Pd}(\mathrm{II})$-catalyzed direct aromatic carbonylation using $\mathrm{Pd}(\mathrm{OAc})_{2}-\mathrm{Cu}(\mathrm{OAc})_{2}$ with the chelation-induced site selectivity, 1-benzyl-1,2,3,4-tetrahydroisoquinolines and 1-benzyl-1,2,3,4-tetrahydro- β-carbolines were converted to 8 -oxoberbines 5a-i and related benzolactams 7 and 8 with a yohimbane skeleton [10]. 8-Oxoberbines 10a,b with a bromine atom were also prepared by the carbonylation. The method is promising as a widely applicable synthetic tool for nitrogen-containing heterocyclic compounds. Studies designed to use the method for the
synthesis of other biologically active alkaloids are currently underway [11, 12].

EXPERIMENTAL

General remarks. Melting points were measured with a Yanagimoto micro melting point apparatus, and were uncorrected. The IR spectra were recorded with a JASCO IR-810 spectrometer. The LR- and HR-EI-MS spectra were determined with a JEOL JMS-HX110 or JEOL JMS-FABmate or JEOL JMS-700TZ mass spectrometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a JEOL JNMJX270 spectrometer (270 MHz). NMR samples were prepared using deuterio chloroform (99.8 atom \% D, containing $0.03 \% \mathrm{v} / \mathrm{v}$ tetramethylsilane (Aldrich). Chemical shifts were reported in ppm. TLC was carried out on a Merck Silica gel $60 \mathrm{PF}_{254}$. Elemental analyses were performed with Yanako MT-6 CHN CORDER and Dionex DX-500 at the Analytical Laboratory of Faculty of Pharmaceutical Science, Hokkaido University.

Tetrahydroisoquinolines $\mathbf{1 a}$ (a colorless oil [13]), 1b (a colorless oil [14]), 1c [a colorless oil (lit. [15] mp 84 ${ }^{\circ} \mathrm{C}$)], $\mathbf{1 d}$ [a colorless oil (lit. [16] mp 84-85 ${ }^{\circ} \mathrm{C}$)], $\mathbf{1 e}$ (a colorless oil [16]), $\mathbf{4 f}$ (a colorless oil [17]), $\mathbf{4 g}$ [a colorless oil (lit. [18] HCl salt mp $200^{\circ} \mathrm{C}$; lit. [19] HCl salt $\mathrm{mp} 202-203^{\circ} \mathrm{C}$)], 4h [a colorless oil (lit. [20] HCl salt mp $294^{\circ} \mathrm{C}$)], and 4 i [a colorless oil][21] were prepared by BischlerNapieralski cyclization of the corresponding N-phenethyl $-\alpha$-phenylacetamides, followed by NaBH_{4} reduction of the resultant 3, 4-dihydro derivatives, according to a modification [22] of the wellknown reaction sequence [6].

3,4-Dimethoxybenzyl-1,2,3,4-tetrahydro- $\boldsymbol{\beta}$-carboline (6a). N -Benzyl- N-[2-(3-indolyl)ethyl]-2-(3,4-dimethoxyphenyl)acetamide was prepared in 63% yield by N-acylation of N-benzyltryptamine, bp $190^{\circ} \mathrm{C} / 0.15$ torr (lit. [23] bp $160^{\circ} \mathrm{C} / 0.01$ torr) with $3,4-$ dimethoxyphenylacetyl chloride) and subjected to BischlerNapieralski reaction with phosphorous oxychloride in boiling toluene for 3 h , followed by treatment with sodium borohydride in methanol to give the N-benzyl-1,2,3,4-tetrahydro- β-carboline as a light yellow oil (66\%) after purification by a column chromatography on silica gel (ethyl acetate-hexane 4:1). The N benzyl group was removed by treatment with $20 \% \mathrm{Pd}(\mathrm{OH})_{2}$ on carbon and ammonium formate in boiling ethanol-acetic acid (20:1), which is a modification of the known method [24], to give $\mathbf{6 a}$ as a light yellow oil (91\%) (lit. [25] mp $91^{\circ} \mathrm{C}$; lit. [25, 26] $\mathrm{mp} 98^{\circ} \mathrm{C}$; lit. [27] mp $130-131^{\circ} \mathrm{C}$; Lit. [28] HCl salt mp $233^{\circ} \mathrm{C}$; lit. [29] HCl salt mp $235-236^{\circ} \mathrm{C}$); IR (neat): $3360(\mathrm{NH}), 1592,1515 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta 2.72-2.78(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 2.95-3.11(\mathrm{~m}, 3 \mathrm{H}$, benzyl 2 H and $3-\mathrm{H}), 3.32(\mathrm{dt}, J=12.5,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.79,3.89$

Scheme 2

5f, 57\%, 5g, 67\%
5h, 71\%, 5i, 62\%

Table 2
Carbonylation of 1-benzyl-1,2,3,4-tetrahydro- β-carbolines $\mathbf{6}$.

	NMR ratios of $\mathbf{7}$ and $\mathbf{8}^{\text {a,b }}$		
	A	C	
	B		
$\mathbf{y y y y}$	$\mathbf{7 : 8}$	$\mathbf{7 : 8}$	$\mathbf{7 : 8}$

${ }^{\text {a }}$ Isomer ratios in the crude reaction mixtures were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis.
"The ratio " $0: 10$ " or " $10: 0$ " shows that one of the two isomers was not detected.

(each s, each $3 \mathrm{H}, \mathrm{OMe}), 4.36(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 6.75(\mathrm{~d}, J=$ $\left.1.7 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 6.80\left(\mathrm{dd}, J=6.9,1.7 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 6.84(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 5^{\prime}-\mathrm{H}$), $7.06,7.12$ (each d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 6-$ and $7-\mathrm{H}$), 7.21 , 7.48 (each dd, $J=7.6,1.7 \mathrm{~Hz}$, each $1 \mathrm{H}, 5-$ and $8-\mathrm{H}$), 7.55 (br. s, $1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm}$; EI-MS (70 eV): m/z $322\left(\mathrm{M}^{+}, 1.1\right), 185(6.8), 171$ (100), 144 (10), 115 (5.7); HR-MS calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ 322.1681; Found 322.1674.

$\mathbf{3 , 4}$-(Methylenedioxy)-1,2,3,4-tetrahydro- $\boldsymbol{\beta}$-carboline ($\mathbf{6 b}$).

 Similarly, N-benzyl- N-[2-(3-indolyl)ethyl]-2-(3,4-methylenedioxyphenyl) acetamide, mp $130-131^{\circ} \mathrm{C}$ (benzene), as colorless crystals (86%) was obtained and subjected to the Bischler-Napieralski reaction followed by sodium borohydride reduction to give N -benzyl-1,2,3,4-tetrahydro-b-carboline (75\%). Removal of the N-benzyl group with $20 \% \mathrm{Pd}(\mathrm{OH})_{2}$ on carbon and ammonium formate [24]and purification of the crude product by a column chromatography on silica gel (20:1 ethyl acetate-methanol) afforded $\mathbf{6 b}$ as a light yellow oil (68%) (lit. [28] HCl salt $\mathrm{mp} 271-273^{\circ} \mathrm{C}$; lit. [30] HCl salt mp $273-274^{\circ} \mathrm{C}$); IR (neat): 3582 (NH), 3402 (NH), 1606, $1502,1498 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta 2.72-2.78(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 2.98,3.00$ (each s, each 1H, benzyl 2 H), $3.00-3.07(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 3.33(\mathrm{dt}, J=12.5,4.6,4.6 \mathrm{~Hz}$, $1 \mathrm{H}, 3-\mathrm{H}), 4.30(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 5.97\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.97$ (dd, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}$), 6.78 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}$), 6.80 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}$), $7.09,7.13$ (each $\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 6$ - and $7-\mathrm{H}), 7.24,7.49$ (each dd, $J=7.9,1.7 \mathrm{~Hz}$, each $1 \mathrm{H}, 5-$ and $8-\mathrm{H}$), 7.55 (br. s, 1H, NH) ppm; EI-MS (70 eV): m/z 306 ($\mathrm{M}^{+}, 0.7$), 305 (1.2), 185 (3.4), 171 (7.4), 135 (7.2), 115 (4.3); HR-MS calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ 306.1368; Found 306.1366.

A general procedure for $\mathrm{Pd}(\mathrm{II})$-catalyzed carbonylation of 1-benzyl-1,2,3,4-tetrahydroisoquinolines 1a-i and 1-benzyl$\mathbf{1 , 2 , 3}, 4$-tetrahydro- $\boldsymbol{\beta}$-carbolines $\mathbf{4 a , b}$. Method A. A stirred suspension of freshly prepared amine $(0.1 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(1.12$ $\mathrm{mg}, 5 \mathrm{~mol} \%)$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(9.2 \mathrm{mg}, 50 \mathrm{~mol} \%)$ in toluene $(2 \mathrm{~mL})$ was refluxed in an atmosphere of carbon monooxide (ca. $1-1.5 \mathrm{~L}$) containing 6 mL air (corresponding to 0.05 mmol of oxygen) delivered from a toy balloon in an oil bath at $120^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was cooled to room temperature and filtered through a pad of powdered anhydrous magnesium sulfate. The filtrate was concentrated, and the residue was analyzed by ${ }^{1} \mathrm{H}-$ NMR and purified by preparative silica gel TLC (2.5-5\% methanol-dichloromethane) and/or crystallization.

Method B. A stirred mixture of amine (0.1 mmol) and Pd $(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mathrm{~mol} \%)$ in toluene $(2 \mathrm{~mL})$ was refluxed in an atmosphere of carbon monoxide in an oil bath at $120^{\circ} \mathrm{C}$ for 2 h . Method C: A stirred mixture of amine $(0.1 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2} \cdot 2$ PPh_{3} [2] ($74.9 \mathrm{mg}, 100 \mathrm{~mol} \%$) in toluene (2 mL) was refluxed in an atmosphere of carbon monoxide in an oil bath at $120^{\circ} \mathrm{C}$ for 2 h . The products, 8 -oxoberbines, 2a, 3a, 2b, 3b, 2c, 2d, 3e, 5f, 5g, and $\mathbf{5 h}$, and 8 -oxoindolobenzoquinilizidine, $7 \mathbf{a}$ and $\mathbf{8 a}$, were known.
(\pm)-8-Oxotetrahydropalmatine (2a). Colorless crystals (14%); $R_{f} 0.5$ (5% methanol-dichloromethane); mp $171-172^{\circ} \mathrm{C}$ (ethanol) (lit. [17, 31] mp $167-168^{\circ} \mathrm{C}$; lit. [5b] mp $169-170^{\circ} \mathrm{C}$; lit. [21] mp 170-171 ${ }^{\circ} \mathrm{C}$; lit. [22] $\mathrm{mp} 171-172^{\circ} \mathrm{C}$).
(\pm)-8-Oxoxylopinine (3a). Colorless crystals (47%); $R_{f} 0.55$ (5% methanol-dichloromethane); mp 191-192 ${ }^{\circ} \mathrm{C}$ (benzene-diethyl ether) (lit. [32, 33] mp $187-188^{\circ} \mathrm{C}$; lit. [34] mp $188-189^{\circ} \mathrm{C}$; lit. [35] $\mathrm{mp} 190-192^{\circ} \mathrm{C}$; lit. [36] mp $191^{\circ} \mathrm{C}$; lit. [37] mp 191-192 ${ }^{\circ} \mathrm{C}$).
(\pm)-8-Oxosinactine (2b). Colorless crystals (71%); $R_{f} 0.5$ (5% methanol-dichloromethane); $\mathrm{mp} 199-202^{\circ} \mathrm{C}$ (methanol) (lit. [38] mp 198-200 ${ }^{\circ} \mathrm{C}$; lit. [22, 37] mp $198-202^{\circ} \mathrm{C}$).
(\pm)-8-Oxoisosinactine (3b). Colorless crystals (13% in Method B); $R_{f} 0.55$ (5% methanol-dichloromethane); mp 175$176^{\circ} \mathrm{C}$ (ethyl acetate-diethyl ether) (lit. [34] mp $174-178^{\circ} \mathrm{C}$; lit. [36] mp $175-176^{\circ} \mathrm{C}$; lit. [37] mp 186-186.5 ${ }^{\circ} \mathrm{C}$).
(\pm)-8-Oxocanadine (2c). Colorless crystals (12%); $R_{f} 0.5$ (5% methanol-dichloromethane); mp 209-211 ${ }^{\circ} \mathrm{C}$ (EtOH) [5] (lit. [39] $\mathrm{mp} 198-200^{\circ} \mathrm{C}$; lit. [22] mp $198-202^{\circ} \mathrm{C}$; lit. [17, 5b, 31] $\mathrm{mp} 217-218^{\circ} \mathrm{C}$; lit. [21, 40] mp 222- $223^{\circ} \mathrm{C}$).
(\pm)-8-Oxoisocanadine (3c). Colorless crystals (45%); $R_{f} 0.55$ (5% methanol-dichloromethane); mp 221-224 ${ }^{\circ} \mathrm{C}$ (methanol); IR (Nujol): 1638 (CO), $1605 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta ~ 2.71-2.95(\mathrm{~m}, 4 \mathrm{H}, 5-$, $5-$ - 6a-, 13b-H), 3.10 (dd, $J=15.5 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\mathrm{H}), 3.94$ (s, $6 \mathrm{H}, \mathrm{OMe}), 4.80(\mathrm{dd}, J=13.2,4.0 \mathrm{~Hz}, 13 \mathrm{a}-\mathrm{H}), 4.89-4.94(\mathrm{~m}, 1 \mathrm{H}$, $6 \mathrm{~b}-\mathrm{H}), 5.95$ (s, 2H, 2,3-OCH2O), 6.66 (s, 1H, 4-H), 6.70 (s, 2H, 1and $12-\mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}, 9-\mathrm{H}) \mathrm{ppm}$; EI-MS $(70 \mathrm{eV}): m / z 353\left(\mathrm{M}^{+}\right.$, 100), $352\left[(\mathrm{M}-\mathrm{H})^{+}, 48.7\right], 337\left[(\mathrm{M}-\mathrm{MeH})^{+}, 2.7\right], 178$ [$\left(\mathrm{MeO}_{3} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{COH}\right)^{+}$, 91.8], 177 [$\left(\mathrm{MeO}_{3} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{CO}\right)^{+}$, 8.9] 172 $\left[\left(\mathrm{OCH}_{2} \mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2}\right)^{+}\right.$, 2.4]. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5}$: C, 67.98: H, 5.42; N, 3.96. Found: C, 67.79: H, 5.59; N, 3.88.
(\pm)-8-Oxostylopine (2d). Colorless crystals (72%); $R_{f} 0.5$ (5% methanol-dichloromethane); $\mathrm{mp} 267-270^{\circ} \mathrm{C}$ (methanol) (lit. [41] mp 250-252 ${ }^{\circ} \mathrm{C}$; lit. [22] mp 267-270 ${ }^{\circ} \mathrm{C}$).

2,3,10,11-Bis(methylenedioxy)-8-oxoberbine (3d). Colorless crystals (11% in Method B); $R_{f} 0.55$ (5% methanol-dichloromethane); $\mathrm{mp} 222-224^{\circ} \mathrm{C}$ (methanol). IR (Nujol): 1642 (CO), 1610, 1506, 1459 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta 2.68-2.94(\mathrm{~m}, 4 \mathrm{H}, 5-, 5-, 6 \mathrm{a}-\mathrm{H}, 13 \mathrm{~b}-\mathrm{H}), 3.06$ (dd, J $=15.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\mathrm{H}), 4.77(\mathrm{dd}, J=13.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\mathrm{H})$, 4.88-4.93 (m, 1H, 6b-H), 5.95 (s, 2,3-OCH 2 O), 6.00, 6.02 (each s, each $1 \mathrm{H}, 10,11-\mathrm{OCH}_{2} \mathrm{O}$), 6.66, 6.67, 6.69 (each 1 H , each s, $\mathrm{Ar}-\mathrm{H}$),
7.58 ($1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}$) ppm; EI-MS (70 eV): m/z 337 ($\mathrm{M}^{+}, 78.6$), 322 (18.2), 308 (15.4), 162 (100), 134 (81.8). Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{5}$: C, 67.65: H, 4.48; N, 4.15. Found: C, 67.51: H, 4.67; N, 4.09.

2,3,9-Trimethoxy-8-oxoberbine (2e). Colorless crystals $(32 \%) ; R_{f} 0.4$ (3% methanol-dichloromethane); mp $211-212^{\circ} \mathrm{C}$ (methanol); IR (Nujol): 1650 (CO), 1612, 1596, $1514 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}^{-}$ NMR: $\delta 2.73-3.11$ (m, 4H, 5-, 5-, 6a-H, 13b-H), 3.07 (dd, $J=$ $15.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\mathrm{H}$), 3.90 (s, 6H, OMe), 3.96 (s, 3H, OMe), $4.74(\mathrm{dd}, J=13.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\mathrm{H}), 5.03-5.08(\mathrm{~m}, 1 \mathrm{H}, 6 \mathrm{~b}-\mathrm{H})$, 6.68, 6.70 (each s, each $1 \mathrm{H}, 1-$ and $4-\mathrm{H}), 6.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $10-\mathrm{H}), 6.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}) 7.38$ (dd, $J=8.6,7.6 \mathrm{~Hz}$, $1 \mathrm{H}, 11-\mathrm{H}) \mathrm{ppm}$. EI-MS (70 eV): m/z 339 ($\mathrm{M}^{+}, 86.8$), 324 (27.0), 310 (13.3), 192 (9.4), 148 (100). Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{4}$: C, 70.78 ; H, 6.24; N, 4.13. Found: C, 70.63; H, 6.31; N, 4.11.

2,3,11-Trimethoxy-8-oxoberbine (3e). Colorless crystals (36%); $R_{f} 0.55$ (3% methanol-dichloromethane); $\mathrm{mp} 153-154^{\circ} \mathrm{C}$ (methanol) [42] (lit. [43] mp 158-159 ${ }^{\circ} \mathrm{C}$).

2,3-Dimethoxy-8-oxoberbine (5f). Colorless crystals (57\%); $R_{f} \quad 0.6$ (5% methanol-dichloromethane); $\mathrm{mp} \quad 142-144^{\circ} \mathrm{C}$ (methanol) (lit. [17] mp $139-140^{\circ} \mathrm{C}$; lit. [36] $\mathrm{mp} 140-141^{\circ} \mathrm{C}$; lit. [35] $\mathrm{mp} 141-142^{\circ} \mathrm{C}$; lit. [43] $\mathrm{mp} 142^{\circ} \mathrm{C}$; lit. [21b, 32] mp $143-144^{\circ} \mathrm{C}$; lit. [34] mp $143-145^{\circ} \mathrm{C}$; lit. [37] mp 144- $145^{\circ} \mathrm{C}$).
$\mathbf{2 , 3 , 1 0}$-Trimethoxy-8-oxoberbine (5g). Colorless crystals (67%); $R_{f} 0.55$ (5% methanol-dichloromethane); $\mathrm{mp} 164-165^{\circ} \mathrm{C}$ (methanol) (lit. [43] mp $161-162^{\circ} \mathrm{C}$).

2,3,11,12-Tetramethoxy-8-oxoberbine (5h). Colorless crystals (71%); $R_{f} 0.4$ (5% methanol-dichloromethane); mp $199-200^{\circ} \mathrm{C}$ (methanol) (lit. [44] mp 179-180 ${ }^{\circ} \mathrm{C}$).

2,3,9,10,11-Pentamethoxy-8-oxoberbine (5i). A colorless oil (61\%); $R_{f} 0.5$ (5% methanol-dichloromethane); IR (Nujol): 1646 (CO), 1592, 1558, $1414 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$-NMR: $\delta 2.73-3.02$ (m, $4 \mathrm{H}, 5-5-, 6 \mathrm{a}-\mathrm{H}, 13 \mathrm{~b}-\mathrm{H}), 3.15$ (dd, $J=15.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\mathrm{H})$, $3.90(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{OMe}), 3.91$ (s, 6H, 2 OMe), 4.82 (dd, $J=13.5,3.6$ $\mathrm{Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\mathrm{H}), 4.82-4.95(\mathrm{~m}, 1 \mathrm{H}, 6 \mathrm{~b}-\mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $6.70(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) \mathrm{ppm}$; EI-MS (70 eV): m/z 399 ($\mathrm{M}^{+}, 4.2$), 277 (100); HR-MS calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{6}$ 399.1681; Found 399.1702.

9,10-Dimethoxy-8-oxobenz[g]indolo[2,3-a]quinolizidine (7a). A colorless oil (12%); $R_{f} 0.4$ (3\% methanol-dichloromethane) [45]; IR (neat): 3288 (NH), 1709 (CO), 1632, 1603, $1514 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-$ NMR: $\delta 2.80-3.04$ (m, 4H, 5-, 5-, 6a-H, 13b-H), 3.18 (dd, $J=15.1$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\mathrm{H}$), 3.85, 4.02 (each s, each 3H, 2 OMe), 4.86 (br. d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\mathrm{H}), 5.28(\mathrm{dd}, J=12.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{~b}-\mathrm{H}), 6.92$, 6.99 (each d, $J=8.2 \mathrm{~Hz}$, each $1 \mathrm{H}, 11-$ and $12-\mathrm{H}$), 7.18, 7.21 (each t, J $=7.6 \mathrm{~Hz}$, each $1 \mathrm{H}, 2-$ and $3-\mathrm{H}$), $7.38,7.56$ (each d, $J=7.6 \mathrm{~Hz}$, each $1 \mathrm{H}, 1-$ and $4-\mathrm{H}$), 8.13 (br. s, $1 \mathrm{H}, \mathrm{NH}$) ppm; EI-MS (70 eV): m/z 348 $\left(\mathrm{M}^{+}, 32.0\right), 331$ (7.6), 277 (100), 199 (73), 178 (23.1), 171 (35.0), 152 (16.1); HR-MS: calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} 348.1474$; Found 348.1471.

10,11-Dimethoxy-8-oxobenz[g]indolo[2,3-a]quinolizidine (8a). A colorless oil (49\%); $R_{f} 0.45$ (3% methanoldichloromethane) [21]; IR (neat): 3268 (NH), 1652 (CO), 1633, 1602, $1515 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$-NMR: $\delta 2.87-3.15(\mathrm{~m}, 4 \mathrm{H}, 5-, 5-, 6 \mathrm{a}-\mathrm{H}$, $13 \mathrm{~b}-\mathrm{H}), 3.25$ (dd, $J=15.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\mathrm{H}), 3.92(\mathrm{~s}, 6 \mathrm{H}, 2$ OMe), 4.98 (dd, $J=12.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\mathrm{H}$), $5.20-5.30$ (dd, $11.7,3.0 \mathrm{~Hz}, 6 \mathrm{~b}-\mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}, 10-\mathrm{H}), 7.13-7.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.38(\mathrm{dd}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ (s, 1H), 8.14 (br. s, $1 \mathrm{H}, \mathrm{NH}$) ppm; EI-MS (70 eV): m/z 348 $\left(\mathrm{M}^{+}, 100\right), 347$ (36.4), 333 (24.5), 178 (16.6), 150 (21.1), 143 (2.4), 115 (2.2); HR-MS: calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} 348.1474$; Found 348.1449 .
(9,10-Methylenedioxy)-8-oxobenz[g]indolo[2,3-a]quinolizidine (7b). A colorless crystals (68%); $R_{f} 0.4$ (3% methanoldichloromethane); $\mathrm{mp} 258^{\circ} \mathrm{C}$ (dec.) (chloroform); IR (neat):
$3264(\mathrm{NH}), 1730$ (CO), 1638, 1598, 1502, $1490 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta$ 2.75-3.10 (m, 4H, 5-, 6a- and 13b-H), $3.47(\mathrm{~d}, J=15.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}$, $13 \mathrm{a}-\mathrm{H}$), 4.94 (br. d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\mathrm{H}), 5.25$ (br. d, $J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}, 6 \mathrm{~b}-\mathrm{H}), 6.09,6.17$ (each s, each $1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}$), 6.72, 6.89 (each $\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 11,12-\mathrm{H}), 7.09,7.14$ (each $\mathrm{t}, J=7.0 \mathrm{~Hz}$, each $1 \mathrm{H}, 2-$ and $3-\mathrm{H}$), $7.16,7.53$ (each d, $J=7.0 \mathrm{~Hz}$, each $1 \mathrm{H}, 1-$ and 4-H), 9.98 (br. s, 1H, NH) ppm; EI-MS (70 eV): m/z 332 ($\mathrm{M}^{+}, 50.7$), 317 (12.5), 301 (27.2), 213 (83.9), 199 (11.2), 171 (100), 135 (28.5), 115 (12.5); HR-MS: calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$ 332.1162 ; Found 332.1143 .
(10,11-Methylenedioxy)-8-oxobenz[g]indolo[2,3-a]quinolizidine (8b). A colorless oil (22% in Method B); $R_{f} 0.45$ (3% methanoldichloromethane); IR (neat): $3258(\mathrm{NH}), 1710(\mathrm{CO}), 1634,1598$, $1502,1466 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 2.82-3.10(\mathrm{~m}, 4 \mathrm{H}, 5-, 5-, 6 \mathrm{a}-\mathrm{H}, 13 \mathrm{~b}-$ H), 3.20 (dd, $J=15.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\mathrm{H}), 4.96$ (br, d, $J=13.5$ $\mathrm{Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\mathrm{H}$), 5.22 (br. d, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}$), 6.65 (each s, each $1 \mathrm{H}, 12-\mathrm{H}), 7.12,7.20($ each $\mathrm{t}, J=7.6 \mathrm{~Hz}, 2-$ and $3-\mathrm{H}), 7.38$, 7.56 (each d, $J=7.6 \mathrm{~Hz}$, each $1 \mathrm{H}, 1-$ and $4-\mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}, 9-\mathrm{H})$, 8.07 (br. s, 1H, NH) ppm; EI-MS (70 eV): m/z. $332\left(\mathrm{M}^{+}, 46.3\right)$, 184 (22.1), 171 (25), 129 (25.4), 96 (100). HR-MS: calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} 332.1162$; Found 332.1180.

12-Bromo-2,3,10,11-tetramethoxy-8-oxoberbine (10a). From 9a [22]; colorless crystals (76\%); $R_{f} 0.6$ (3\% methanoldichloromethane); mp 166-167.5 ${ }^{\circ} \mathrm{C}$ (ethanol); IR (Nujol): 1649 (CO), 1594, 1561, $1510 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 2.70-3.06(\mathrm{~m}, 4 \mathrm{H}, 5-$ and $13-\mathrm{H}), 3.52(\mathrm{dd}, J=16.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}$, OMe), $3.92(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OMe}), 3.94(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.82(\mathrm{dd}, J=13.5$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\mathrm{H}), 4.93$ (dd, $J=8.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{~b}-\mathrm{H}), 6.70$, 6.75, 7.73 (each s, each $1 \mathrm{H}, 1-$, 4 - and $9-\mathrm{H})$ ppm; EI-MS (70 eV): $m / z 449,447\left(\mathrm{M}^{+}, 79\right.$ and 100), 434, 432 (23 and 30), 418, 416 (22 and 19), 258, 256 (24 and 23), 230, 228 (43 and 43), 190 (13), 149 (16). Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{Br}$: C, 56.27 ; $\mathrm{H}, 4.95$; N, 3.12; Br, 17.82. Found: C, 56.07; H, 5.19; N, 3.07; Br, 17.87.

12-Bromo-2,3,10,11-tetramethoxy-8-oxoberbine (10b). From 9b [22] colorless crystals (78\%); $R_{f} 0.6$ (3% methanoldichloromethane); mp 220-221 ${ }^{\circ} \mathrm{C}$ (ethanol); IR (Nujol): 1651, 1607, $1524 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 2.68$ (dd, $J=16.3,13.4 \mathrm{~Hz}$, $1 \mathrm{H}, 5 \mathrm{~b}-\mathrm{H}), 2.78(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, 5 \mathrm{a}-\mathrm{H}), 2.92,2.98$ (AB type, $J=11.7 \mathrm{~Hz}, 2 \mathrm{H}, 13-\mathrm{H}), 3.46(\mathrm{dd}, J=16.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}, 13 \mathrm{a}-\mathrm{H})$, $3.90,3.93$ (each s, each 3 H), 4.79 (dd, $J=13.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}$, $13 \mathrm{a}-\mathrm{H}$), 4.92 (br. d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{~b}-\mathrm{H}), 6.11$ (s, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}$), $6.69,6.71,7.59$ (each s, each $1 \mathrm{H}, 1,4-$ and $9-\mathrm{H}$) ppm; EI-MS (70 $\mathrm{eV}): m / z 433,431\left(\mathrm{M}^{+}, 88\right.$ and 100), 418, 416 (30 and 36), 402, 400 (29 and 25), 244, 242 (34 and 34), 214, 212 (52 and 53), 190 (18), 133 (45). Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{Br}$: C, 55.57; H, 4.20; N, 3.24; Br, 18.48. Found: C, 55.61; H, 4.24; N, 3.00; Br, 18.66.

Acknowledgments. The authors thank the Akiyama Foundation for generous financial support and N. E. ChemCat, Co. Ltd., for the generous donation of palladium catalysts.

REFERENCES AND NOTES

[1] (a) Orito, K.; Horibata, A.; Nakamura, T.; Ushito, H.; Nagasaki, H.; Yuguchi, M.; Yamashita, S.; Tokuda, M. J Am Chem Soc 2004, 126, 14342; (b) Orito, K.; Miyazawa, M.; Nakamura, T.; Horibata, A.; Ushito, H.; Nagasaki, H.; Yuguchi, M.; Yamashita, S.; Yamazaki, T.; Tokuda, M. J Org Chem 2006, 71, 5951.
[2] Stephenson, T. A.; Morehouse, S. M.; Powell, A. R.; Heffer, J. P.; Wilkinson, G. J Chem Soc 1965, 3632.
[3] (a) Manske, R. H. F.; Ashford, W. R. In The Alkaloids; Manske, R. H. F.; Holmes, H. L., Eds.; Academic Press: New York, 1954;

Vol. 4, p 77; (b) Santavy F. In The Alkaloids; Manske, R. H. F., Ed.; Academic Press: New York, 1970; Vol. 12, p 333; (c) Santavy, F. In The Alkaloids; Manske, R. H. F.; Rodrigo, R. G. A., Eds.; Academic Press: New York, 1979; Vol. 17, p 385; (d) Bhakuni, D. S.; Jain S. In The Alkaloids; Brossi, A., Ed.; Academic Press: Orlando, FL, 1986; Vol. 28, p 95; (e) Hanaoka M. In The Alkaliids; Brossi, A., Ed.; Academic Press: Orlando, FL, 1988; Vol. 33; p 141.
[4] Synthesis of 8-oxoberbines with $\operatorname{Pd}(0)$, see: (a) Pandey, G. D.; Tiwari, K. P. Synth Commun 1979, 9, 895; (b) Pandey, C. D.; Tiwari, K. P. Tetrahedron 1981, 37, 1213; (c) Orito, K.; Miyazawa, M.; Kanbayashi, R.; Tokuda, M.; Suginome, H. J Org Chem 1999, 64, 6583. With Co_{2} $(\mathrm{CO})_{8}$ and $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$, see: (d) Trifonov, L. S.; Orehovats, A. S.; Tetrahedron Lett 1985, 26, 3159.
[5] (a) Leitaoda-Cunha, E. V.; Fechine, I. M.; Guedes, D. N.; Barbosa-Filho, J. M.; de Silva, M. S. In The Alkaloids; Cordell, G. A., Ed.; Elsevier Academic Press: Amsterdam, 2005; Vol. 62, p 1; (b) Matulenko, M. A.; Meyers, A. I. J Org Chem 1996, 61, 573.
[6] (a) Whaley, W. M.; Govindachari, T. R. Inorg React 1951, 6, 74; (b) Deulofeu, V.; Comin, J.; Vernengo, M. J. In The Alkaloids; Manske, R. H. F., Ed.; Academic Press: New York, 1963; Vol. 10, p 401.
[7] For ortho-palladation products with $\mathrm{Pd}(\mathrm{OAc})_{2}$ of benzylic amines and β-phenethylamines having hydrogen on their nitrogen atoms, see: (a) Fuchita, Y.; Tsuchiya, H. Polyhedron 1993, 12, 2079; Inorg Chim Acta 1993, 209, 229; (b) Vicente, J.; Saura-Llamas, I.; Palin, M. J.; Jones, P. G.; Ramírez de Arellano, M. C. Organometallics 1997, 16, 826.
[8] (a) Liang, C. D. Tetrahedron Lett 1986, 27, 1971; (b) Sonoda, M.; Kakiuchi, F.; Chatani, N.; Murai, S. Bull Chem Soc Jpn 1997, 70, 3117; (c) Ie, Y.; Chatani, N.; Ogo, T.; Marshall, D. R.; Fukuyama, T.; Kakiuchi, F.; Murai, S. J Org Chem 2000, 65, 1475.
[9] A catalytic version of the Method C carbonylation of 1d with $\mathrm{Pd}(\mathrm{OAc})_{2} \cdot 2 \mathrm{PPh}_{3}$ [20] ($20 \mathrm{~mol} \%$) in the presence of oxygen (70 mol \%) gave 2d 18 h later in a similar selectivity (72%) to that of Method C , when the initial dark-reddish color of the reaction mixture due to the $\mathrm{Pd}(\mathrm{II})$ ion was kept during the carbonylation. Similar carbonylation of 1d with $\mathrm{Pd}(\mathrm{PPh})_{4}(20 \mathrm{~mol} \%)-\mathrm{AcOH}(40 \mathrm{~mol} \%), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(10 \mathrm{~mol} \%)-$ $\mathrm{PPh}_{3}(40 \mathrm{~mol} \%)-\mathrm{AcOH}(40 \mathrm{~mol} \%)$, or $\mathrm{Pd}(\mathrm{OH})_{2}(20 \%)$ on carbon or $\mathrm{Pd}(\mathrm{acac})_{2}(20 \mathrm{~mol} \%)$ with $\mathrm{PPh}_{3}(40 \mathrm{~mol} \%)$ and $\mathrm{AcOH}(40 \mathrm{~mol} \%)$ also produced 2d in $50-70 \%$. However, an identical treatment for carbonylation of $\mathbf{1 d}$ with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%)$ gave no benzolactams but a mixture of 6,7,3', 4^{\prime}-bis(methylenedioxy)-1-benzylisoquinoline and its 3,4-dihydro derivative in a ratio of $1: 9$ almost quantitatively.
[10] (a) Monteiro H. J. In The Alkaloids; Manske, R. H. F., Ed.; Academic Press: New York, 1968; Vol. 11, p 145; (b) Toke, L.; Szantay, C. Heterocycles 4, 251 (1976); (c) Szantay, C.; Blasko, G.; Honty, K.; Dornyei, G. In The Alkaloids; Brossi, A., Ed.; Academic Press: Orlando, 1986; Vol. 27, p 131, 407; (d) Chen F.-E.; Huang, J. Chem Rev 2005, 105, 4671.
[11] (\pm)-Nuevamine, which is one of the isoquinoline alkaloids having a five-membered benzolactam, could not be obtained by the method A or C, but formed by the method (B) with 3 equiv of palladium(II) acetate in boiling toluene almost as a single product ($>95 \%$) in 73% isolated yield, $\mathrm{mp} 206.2-208.9^{\circ} \mathrm{C}$ (methanol). For isolation and synthesis of the alkaloid, see; (a) Moniot, J. L.; Hindenlang, D. M. Shamma, M. J Org Chem 1979, 44, 4347; (b) Valencia, E.; Freyer, A. J.; Shamma, M. Tetrahedron Lett 1984, 25, 599; (c) Alonso, R.; Castedo, L.; Dominguez, D. Tetrahedron Lett 1985, 26, 2925; (d) Moreau, A.; Couture, A.; Deniau, E.; Grandclaudon, P.; Lebrun, S. Tetrahedron 2004, 60, 6169; (e) Wakchaure, R. B.; Easwar, S.; Puranik, V.; Argade, N. P. Tetrahedron 2008, 64, 1786.
[12] (a) Wada, Y.; Nagasaki, H.; Tokuda, M.; Orito, K. J Org Chem 2007, 72, 2008; (b) Yamashita, S.; Kurono, N.; Senboku, H.; Tokuda, M.; Orito, K. Eur J Org Chem 2009, 1173.
[13] Hahn, G.; Kely, W. Ber 1937, 70, 685.
[14] Mehra, K.; Grag, H. S.; Bhakuni, D. S.; Khanna, N. M. Ind J Chem 14B, 1976, 844.
[15] Haworth, R. D.; Perkin, W. H., Jr.; Rankin, J. Perkin J Chem Soc 1924, 125, 1686.
[16] Buck, J. S.; W. R. Perkin Jr, Stevens, T. S. J Chem Soc 1925, 1462.
[17] Kessar, S. V.; Singh, P.; Vohra, R.; Kaur, N. P.; Venugopal, D. J Org Chem 1992, 57, 6716.
[18] Bick, I. R. C.; Clezy, P. S.; Vernengo, M. J. J Chem Soc 1960, 4928.
[19] Tomita, M.; Fujita, E.; Murai, F. Yakugaku Zasshi 1951, 71, 1035.
[20] Chakravati, S.; Swaminathan, M. J Ind Chem Soc 1934, 11, 107.
[21] (a) Shono, K.; Usui, Y.; Mizutani, T.; Hamaguchi, H. Tetrahedron Lett 1980, 21, 3073; (b) Shono, K.; Hamaguchi, H.; Sasaki, M.; Figita, S.; Nagami, K. J Org Chem 1983, 48, 1621.
[22] Orito, K.; Miyazawa, M.; Kanbayashi, R.; Tokuda, M.; Suginome, H. J Org Chem 1999, 64, 6583.
[23] Nowak, W.; Gerlach, H. Liebigs Ann Chem 1993, 153.
[24] Ram, S.; Spicer, L. D. Synth Commun 1987, 17, 415.
[25] Potts, K. T.; Robinson, R. J Chem Soc 1955, 2675.
[26] Hahn, G.; Hansel, A. Ber 1938, 71, 2192.
[27] Kanaoka, Y. Chem Pharm Bull 1959, 7, 597.
[28] Kametani, T.; Takeshita, M.; Satoh, F. Yakugaku Zasshi 1974, 94, 261.
[29] Hahn, G.; L. Bárwald, Schales, O.; Werner, H. Ann Chem 1935, 520, 107.
[30] Short, H.; Freifelder, M.; Stone, G. R. J Org Chem 1961, 26, 2560.
[31] Nimgirawath, S.; Ponghusabun, O. Aust J Chem 1994, 47, 951.
[32] Singh, K. N. Tetrahedron Lett 1998, 39, 4391.
[33] Comins, D. L.; Thakker, P. M.; Baevsky, M. F. Tetrahedron 1997, 53, 16327.
[34] Lenz, G. J Org Chem 1974, 39, 2846.
[35] Ninomiya, I.; Naito, T.; Takasugi, H. J Chem Soc Perkin Trans 1975, 1720.
[36] Pandey, G. D.; Tiwari, K. P. Tetrahedron 1981, 37, 1213.
[37] Orito, K.; Satoh, Y.; Nishizawa, H.; Harada, R.; Tokuda, M. Org Lett 2000, 2, 2535.
[38] Govindachari, T. R.; Nagarajan, K.; Charubala, R. Pai, B. R. Ind J Chem 1970, 8, 763.
[39] Perkin, W. H.; Jr., Ray, J. N.; Stauton, J.; Hist, M.; Robinson, R. J Chem Soc 1925, 127, 740.
[40] Haworth, R. D.; Pinder, A. R.; Robinson, R. Nature 1950, 165, 529.
[41] Chrzanowska, M. J Nat Prod 1995, 58, 401.
[42] Naito, T.; Katsumi, K.; Toda, Y.; Ninomiya, I. Heterocycles 1983, 20, 775.
[43] Brown, D. B.; Dyke, S. F. Tetrahedron 1966, 22, 2429.
[44] Greenslade, D.; Ramage, R. Tetrahedron 1977, 33, 927.
[45] Meyers, A. I.; Hellring, S. J Org Chem 1982, 47, 2229.

